

INSTALLATION MANUAL

For Opal Solar OSR Series

OpalSolar Pty Ltd info@opalsolar.com.au +612 9725 1111 10-12 Forsyth Close Wetherill Park NSW 2164 www.opalsolar.com.au

Opal Solar installation manual

For all Opal Solar modules

Contents

1.Safety	2
2.Disclaimer Of Liability	2
3. Transporting, Unpacking And Storing	2
4.Mechanical Installation 4.2 General Installation Guide 4.2.1 Using Frame Mounting Holes 4.2.2 Using Clamps	3 3
5.Electrical Installation 5.1 Electrical Property 5.2 Bypass Diodes 5.3 Wiring	3 4
6.Grounding	4
7.Maintenance And Care	4
8.Product Specification 8.1 Measurements 8.2 Product Identification 8.3 Components	5 5 5

Opal Solar Pty Ltd info@opalsolar.com.au +612 9725 1111 Unit 1, 10-12 Forsyth Close Wetherill Park NSW 2164 www.opalsolar.com.au

1.SAFETY

The instructions related to safety and use indicated in this installation manual are intended for the prevention of unexpected danger, damage or failure.

- Only authorized and trained personnel should have access to or perform work on the modules or solar system.
- Personal protective equipment must be worn during the installation to reduce the risk of electric shock.
- Avoid contact with electrically active parts of the panel, such as terminals, without appropriate safety gear and make sure to isolate live circuits before attempting to make or break any connections. Contact may result in lethal spark or electric shock.
- Do not use or install damaged or broken module. Contact with any broken module surface or frame can lead to electrical shock.
- Perform all work in dry conditions. Installation of the modules during rain, heavy wind or snow may result in body injury or death.
- Heavy objects must be kept off the solar module.
- Do not stand or step on the module.
- Do not drop the module. Failure to comply may result in product damage, product failure or body injury.
- Do not scratch the coating surface of the frame. Scratches may decrease the total solar output due to corrosion of the frame.
- Do not disassemble the modules or remove any part of the module. Holes in the frame or glass of the module may decrease the strength of the frame or break the glass.
- Do not remove the labels attached to the module.
- Do not artificially concentrate sunlight on these solar modules.
- Use proper equipment, connectors and wires for the installation of the module. Ensure that all connections are securely made with no gap between the contacts. Failure to comply may result in fire, electrical shock, product damage, product failure, or body injury.
- Protect the electrical plug contacts against corrosion and soiling. Make sure that all connectors are corrosion free and clean before making the connection.
- Opal Solar modules are certified for operating in Class A installations at voltages below 1000Vdc. This maximum voltage should not be exceeded at any time.
- Use only insulated tools that are approved for working on electrical installations.

DO NOT INSTALL DURING RAIN, SNOW OR HEAVY

DO NOT STAND OR STEP ON THE MODULE

WEAR PROTECTIVE GEAR DURING INSTALLATION

MAXIMUM VOLTAGE OF 1000Vdc DO NOT EXCEED

DO NOT DISASSEMBLE THE MODULES

AVOID CONTACT
WITH ELECTRICALLY
ACTIVE PARTS

2.DISCLAIMER OF LIABILITY

The installation, handling and use of Opal Solar modules are beyond company control. Opal Solar does not assume any responsibility for loss, damage, injury or expense resulting from the improper installation, handling, use or maintenance.

3.TRANSPORTING, UNPACKING AND STORING

- Do not stack on more than 2 packing boxes (maximum height of 2 pallets). See Figure 01.
- Do not loosen the banding when module is being transported. In case of loose banding, the module will be shaken and it can give stress to the module and may cause product damage.
- Do not place modules directly on top of each other.

Fig.01 No more than two boxes should be stacked

4.MECHANICAL INSTALLATION 4.1 SITE SPECIFICATION

Opal Solar Modules can be mounted in landscape and portrait orientation however the shading impact of dirt on the solar cells can be minimized by orienting the product in portrait. Position the modules to minimize the chances of shading at any time of the day. Mount modules in a way that the drainage holes in the module frame stay unblocked.

Opal Solar panel's installation site should meet the following

requirements as per module datasheet: Operation temperature: -40°C ~ +85°C

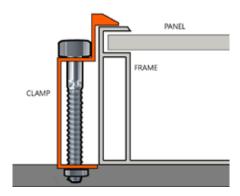
Mechanical load resistance: High wind loads (2400Pa), snow loads (5400Pa) CHECK INFORMATION

4.2 GENERAL INSTALLATION GUIDE

- The installer of Opal Solar must at all time ensure that the installation complies with all local standards, codes, regulations and industry guidelines.
- Modules should be mounted or stored in a way that the front/top glass faces upward in order to prevent water from entering the junction box which could cause a safety hazard.
- Clearance between the solar module frames and structures such as roof or ground is required to prevent wiring damage and to allow enough ventilation behind the module. The recommended standoff height is a minimum 100mm.
- Modules should be mounted or stored in a way that the front/top glass faces upward in order to prevent water from entering the junction box which could cause a safety hazard.
- Clearance between the solar module frames and structures such as roof or ground is required to prevent wiring damage and to allow enough ventilation behind the module. The recommended standoff height is a minimum 100mm.
- A 10mm gap between module frames is recommended to avoid tension from thermal expansion.
- Modules can be mounted on the sub-structure using corrosion-proof bolts through the mounting holes at the back of the module frame or purpose-designed certified clamps. Any other mounting method must be consulted and approved by Opal Solar in advance, otherwise may damage module and void the warranty.

4.2.1 USING FRAME MOUNTING HOLES

Modules should be bolted to support structures through mounting holes located in the back of the module frame.


To maximize mounting longevity, Opal Solar strongly recommends the use of corrosion proof (stainless steel) fixings. See Figure 05.

4.2.2 USING CLAMPS

- Modules should be mounted using purpose-designed and certified clamps.
- Modules should be attached on a supporting structure (rail) by metal clamps.
- Use at least four clamps on each module; two on each side of the module. Depending on local wind and snow

loads, additional clamps may be required to ensure modules can bear the load.

 The clamps must not contact the front glass of the module or deform the frame in any way. The contact area of clamp with the front of frame must be smooth, otherwise it may damage the frame and hence break the module. Avoid shading effects from the module's clamps. Drainage holes on the modules frame must not be blocked by the clamps. See Figure 02.

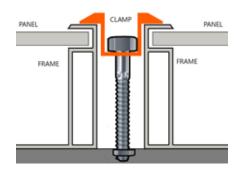


Fig.02 Clamp setup

5.ELECTRICAL INSTALLATION 5.1 ELECTRICAL PROPERTY

Rated electrical characteristics of module such as Isc, Voc and Pmax are measured under Standard Test Conditions (STC). Standard Test Conditions: 1000 W/m2 Irradiance, 25°C Cell Temperature and 1.5 Air Mass.

Under normal conditions, photovoltaic modules may produce higher current and/or voltage than reported at Standard Test Conditions. Hence, consider an additional safety factor of 1.25% on lsc and Voc values marked on modules, when determining component voltage ratings, conductor capacities, fusing sizes, and size of controls connected to the modules output.

Modules can be configured in series and/or parallel. See Figure 03.

- Series configuration: module voltages will add up when they are connected in series.
- Parallel configuration: module currents will add up when they are connected in parallel.

Modules with different electrical characteristics must not be connected directly in series.

The maximum system voltage for Opal Solar modules is 1000V DC. Make sure that system voltage and all other DC electrical components will not be exceeded in open-circuit operation at the lowest temperature expected at the PV system location.

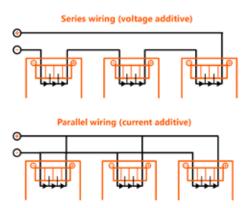


Fig.03 Series or parallel wiring

Always use a suitably rated DC isolator to interrupt the current flow before disconnecting the connectors.

5.2 BYPASS DIODES

There are bypass diodes in the module junction box, wired in parallel with the PV cell strings. To limit modules heating and performance losses in the case of partial shading, the diodes bypass the current generated by the non-shaded cells. Be aware that bypass diodes are not over-current protection devices.

Do not attempt to open the junction box. In the event of a known or suspected diode failure, installers or maintenance providers should contact Opal Solar.

5.3 WIRING

All wiring should be performed, by qualified installers, in accordance with the local codes and regulations, including fire, building and electrical.

Junction boxes have been designed to be easily interconnected in series. Each module has two single-conductor wires, one positive and one negative, which are pre-wired inside the junction box.

To connect modules in series, plug the positive socket of one module into the negative socket of the next until you hear a "click". Before connecting modules always ensure that the contacts are corrosion free, clean and dry.

Product can be irreparably damaged if an array string is connected in reverse polarity to another. Always verify the voltage and polarity of each individual string before making a parallel connection. If you measure a reversed polarity or a difference of more than 10V between strings then check the string configuration before making the connection.

Cables should be fixed to the mounting structure in such a way that mechanical damage of the cable and/or the modules

is avoided. Do not apply stress to the cables. For fixing, use appropriate means, such as sunlight resistant cable ties and/ or wire management clips specifically designed to attach to the modules frame. While the cables are sunlight resistant and waterproof, where possible, avoid direct sunlight exposure and water immersion of the cables.

6.GROUNDING

All conductive parts of the solar array (e.g. module frames, mounting racks) must be grounded in accordance with the appropriate national and local regulation at the site of installation.

To achieve proper grounding, the module frames and all conductive structural members must be connected together continuously using a suitable grounding conductor. Please be careful in arranging the system ground so that the removal of one module from the circuit will not interrupt the grounding of any other modules.

Pre-drilled holes marked with a grounding sign at the back of the module frame can be used for this purpose. These holes should be used for grounding purposes only and must not be used for mounting the modules. See Figure 04.

Third party grounding devices can be installed on Opal Solar modules for grounding the conductive parts of the modules. The devices have to be installed in accordance with the grounding device manufacturer's specified instructions.

Opal Solar modules use an anodic oxidized aluminium frame to resist corrosion. The grounding device must fully contact with the inside of the aluminium alloy, and must penetrate the surface of the frame oxidation film.

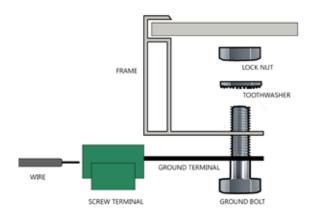


Fig.04 Grounding setup

7.MAINTENANCE AND CARE

Under normal circumstances, a well-designed PV system should operate trouble free over its entire operational life, and it requires minimal maintenance. However, system performance and reliability can be improved by taking some simple steps.

It is the user's responsibility to report to the supplier regarding the damages found within 2 weeks.

We encourage you to periodically inspect the PV array, just as

you might do for a typical roof inspection.

- Periodically inspect the solar modules for damage, such as cracked glass.
- Clean the solar panels glass using fresh water, not organic cleaners or solvents. Beware that abrasive cloth or paper can damage the panel's anti-reflective glass coating.
- If possible, undertake the inspection at a time of day when close proximity objects cast their longest shadows.
- After a major weather event, e.g. hail storm, or if unrelated work has been done on the roof, e.g. roof cleaning, check that no collateral damage has been done to the solar
- Never walk on, sit on, or place objects on the surface of the solar panel.
- Trim any vegetation which may shade the solar array thus impacting performance.
- Check that mounting hardware is properly tightened.
- Inspect all cables to verify that connections are tight; the cables are protected from direct sunlight and sited away from areas of water collection.

- "Pass": describe inspection date and security class.

fuse rating are also shown on the nameplate.

Barcode: each individual module has a unique serial number. The serial number has 18 digits. The 15th and the 16th digit are the week code, and the 17th and the 18th digit are the year code. For example, xxxxxxxxxxxx0106 means the module was made in the first week of 2006. There is only one bar code on module. It is permanently attached to the interior of the module visible when viewing from the front of the module. This bar code is inserted at the beginning of laminating. See Figure 06.

rated current, rated voltage, open circuit voltage, and short circuit current. They are all measured under

standard test conditions(such as weight and dimension).

The maximum system voltage of 1000 VDC and maximum

Do not remove any label. If the label is removed, the product warranty will no longer be honored by Opal Solar.

Fig.06 Typical serial number barcode label

8.PRODUCT SPECIFICATION

8.1 MEASUREMENTS

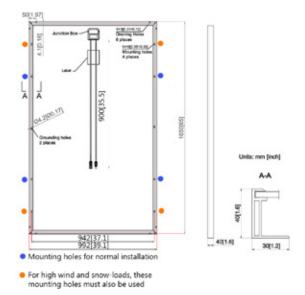


Fig.05 Measurements for module OS250P3BB-60-S

8.3 COMPONENTS

- Solar cell
- Frame
- Clear Tempered glass
- Terminal box
- Negative side output cable and waterproof connector
- Positive side output cable and waterproof connector

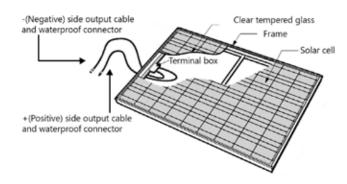


Fig.07 Solar panel components

For other models and more details of the module, please refer to the datasheet or the label at the back of the module.

8.2 PRODUCT IDENTIFICATION

Each module has three labels on its rear side providing the following information:

Nameplate - describes the product type, rated power,

